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ABSTRACT 

The fundamental problem of target tracking is to estimate the state of one or more objects that persist over 
time, based on noisy measurements contained in a vast quantity of mostly spurious measurement data.  
Target tracking is closely related to a number of basic problems in statistical modelling and information 
extraction from noisy data.  Multi-stage processing provides a wealth of processing options that can be 
exploited to achieve robust and high-performance surveillance.  This manuscript describes a number of 
multi-stage tracking architectures that the author has recently studied. Additionally, we study the target 
cardinality problem. 

1 INTRODUCTION 

Tracking combines estimation theory and detection theory, with the further complication of measurement 
origin uncertainty.  Table 1 identifies a number of fundamental problems in information extraction from 
noisy data.   

Table 1.1: A taxonomy of information extraction problems in target tracking.  The problems 
noted in boldface are addressed in this lecture. 

Number of 
targets 

Number of 
targets 

False 
contacts 

Target 
motion 

Solution methodology 

single known no parametric non-Bayesian estimation (least squares) 

single known no stochastic Bayesian estimation (nonlinear filtering) 

single known yes parametric non-Bayesian estimation (maximum-
likelihood tracking) 

single known yes stochastic Bayesian estimation (single-target track 
maintenance) 

multiple known yes stochastic Bayesian estimation (multi-target track 
maintenance) 

multiple unknown yes N/A Bayesian estimation (target cardinality) 

multiple unknown yes stochastic Hypothesis testing & Bayesian 
estimation (coupled track management 

& track maintenance) 

 

As we see from table 1.1, many of the solution methodologies relevant to the surveillance problems of 
interest rely on estimation and detection theory.  Here, we will focus on our recent work in the last two 
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problem domains listed in table 1.1.  First, in section 2, we study the target cardinality problem.  Next, in 
section 3, we overview a number of multi-stage and multi-hypothesis data fusion architectures that we 
have developed in recent years, and provide details and examples for some of these.  

2 THE TARGET CARDINALITY PROBLEM 

Many of the problems in table 1.1 involve the application of estimation theory for determining where a 
target or multiple targets are to be found, assuming that the number of targets is known.  Now we wish to 
determine the number of targets, i.e. target cardinality, disregarding the question of where targets are 
located.  The solution to this problem constitutes a further application of estimation theory. 

2.1 The static problem 
Assume that the surveillance region contains TN  target, where ( )TT PoissonN λ~ .  That is,  
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Further, assume that targets are detected with probability p.  Invoking the splitting property of the Poisson 
process [1], we have that the probability distribution for the number of target contacts CN  is given by 

( )TC pPoissonN λ~ : 
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A question of interest is the following: what is the probability distribution on TN , given that Cn  contacts 
are observed?  The distribution of interest can be obtained by use of Bayes’ rule and the probability 
distribution of CN  given TN , which is given by the binomial distribution.   
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Manipulation of (2.1-2.4) yields the following. 
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That is, having observed Cn  contacts, the number of targets equals or exceeds Cn  with a probability that 
is prescribed by (2.5); thus rnN CT += , where  ( )( )TpPoissonr λ−1~ .  This is a nice result, in that the 
number of unobserved targets obeys the same probability distribution as we had a priori, albeit with a 
suitably reduced mean.  
Remark 2.1 For some surveillance problems, notably in the mine-warfare community, the Poisson prior 
assumption is not always invoked.  The assumption of a uniform prior leads to a negative binomial 
distribution [2].  Modifications to the uniform prior have been considered to reason over multiple 
surveillance regions [3].  Another philosophy for choosing the prior distribution leads to the Katz 
distribution [4]. 
Remark 2.2 One criticism of the Poisson distribution is that does not address the interdependencies that 
may exist with respect to target presence.  In some applications, as in mine warfare, it is found empirically 
that the conditional distribution on undetected targets depends on the number of detected targets: targets 
exist in clusters.  A second criticism is that, as a one-parameter distribution, its variance cannot be set 
independently of the mean (they are the same), and thus does not accurately reflect uncertainty. 
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Remark 2.3 An important characteristic of the solution given by (2.5) is that it is consistent with respect 
to partitioning of the surveillance region.  That is, consider two non-overlapping regions with priors 1Tλ  
and 2Tλ , in which we observe 1Cn  and 1Cn  targets, respectively.  Assuming the same detection 
probability p applies to both regions, we have 111 rnN CT +=  and 222 rnN CT += , where 

( )( )11 1~ TpPoissonr λ−  and ( )( )22 1~ TpPoissonr λ− .  Summing these results, we have 
rnnNN cCTT ++=+

2121 , where ( )( )( )1121 1~ TTpPoissonrrr λλ +−+=  using the merging property of 
the Poisson process [1].  This is the same result that one obtains by considering a single surveillance 
region given by the union of the two surveillance regions. 
We now consider the multi-sensor (or multi-scan) problem, in which a region with a fixed number of 
targets TN  is observed S times, resulting in a sequence of detection cardinalities that we denote by 

( )CSCCC nnnn ,...,, 21= .  We are interested in the same question as before: what is the probability 
distribution on TN , given that the sequence Cn  is observed? 
The measurements in the sequence Cn  are conditionally independent, given the number of targets TN .  
Accordingly, (2.4) can easily be replaced by (2.7).  Then, applying Bayes’ rule, the probability distribution 
on TN  given that the sequence Cn  is observed is given by (2.8), which relies on (2.1) and (2.7). 
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Unfortunately, the posterior probability distribution given by expression (5.8) does not lend itself to a 
simple interpretation as we had with (2.5). 
Remark 2.4 A recursive implementation of (2.8) is possible.  Let ( )( )121 ,...,, −

− = SCCCC nnnn , so that 

( )CSCC nnn ,−= .  Then, using the conditional independence of measurements in the sequence Cn  given the 
number of targets, (2.9) results. 
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 (2.9) 

Having determined the posterior probability distribution as prescribed by (2.5), (2.8), or (2.9), we are now 
in the position to estimate the target cardinality.  We can do so with a number of Bayesian estimators, 
including MMSE, MMAE, and MAP.  The MAP estimator is the simplest, as maximization of the 
posterior distribution over Tn  does not require computation of the denominator in (2.5), (2.8), or (2.9). 

5.2 The static problem with false alarms 
We consider now a generalization of the problem considered in section 5.1. Again, we have an unknown 
number of targets with prior distribution given by ( )TT PoissonN λ~ . At each scan, in addition to target 
detections which occur with probability p for each target, we observe a number of false returns with prior 
distribution ( )FAFA PoissonN λ~ .  As before, we observe a sequence of S detection cardinalities given by 
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( )CSCCC nnnn ,...,, 21= .  What is the probability distribution on TN , given that the sequence Cn  is 
observed? 
It turns out that this problem can be answered with minor modifications to our previous results, by 
conditioning on the number of returns that are target-induced in each scan to obtain (2.10).   
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In the single-scan case, applying both the merging and splitting properties of the Poisson process, the 
denominator in (2.11) can be expressed more simply according to (2.12). 
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As before, once the posterior probability distribution is defined, Bayesian estimators can be readily 
computed.  
Remark 2.5 In the mine-warfare community, the general problem with false alarms is not usually 
considered [2-4].  The reason for this is that detection processing includes close inspection of suspected 
mines, so that false alarm rates are negligible.  Nonetheless, the generalization is of interest in other 
surveillance settings. 
Remark 2.6 As before, a recursive computation of the posterior probability distribution for TN  is 
possible, according to (2.13). 
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5.3 The dynamic problem 
We consider now a generalization of the target cardinality problem, whereby the number of 
targets is time-varying, as specified by birth and death processes.  In particular, assume that, at 
each scan, the number of target births is Poisson distributed with parameter Bλ , and that the 
number of target deaths is Poisson distributed with parameter Tq λ⋅ , i.e. at each scan each existing targets 
dies with probability 10 ≤≤ q .  Once more, we observe a sequence of S detection cardinalities given by 

( )CSCCC nnnn ,...,, 21= , and we wish to determine the probability distribution on TN , given that the 
sequence Cn  is observed. 
In the absence of cardinality measurements, the steady-state target distribution is uniquely 
determined by the parameters Bλ  and q .  In particular, equating the birth and death rates, equation 
(2.14) follows.  Thus, we assume that the prior target cardinality is given by ( )TT PoissonN λ~ , with Tλ  
consistent with (2.14). 

q
B

T
λ

λ = .      (2.14) 

Remark 2.7 More generally, given a target distribution with parameter 0λ , after k scans we have 
(2.15).  It is easy to show from (2.15) that, for ∞→k , we have ( ) Tk λλ → .  It is interesting to note that 
arbitrarily long back-prediction consistent with the dynamics (2.15) is only possible for target densities 
that exceed Tλ .  The back-prediction equation and the associated back-prediction limit are given by (2.16-
2.17).  Note that the limit in (2.17) only applies to target cardinalities lower that the steady-state solution; 
when these are larger, arbitrarily large back-predictions are possible. 
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We now develop a recursive expression for the posterior distribution on target cardinality, given by (2.18-
2.19).  Compared with (2.9), it requires the diffusion or prediction equation (2.18), which involves 
conditioning on the number of targets that survive from the previous scan.  Equation (2.19) involves 
conditioning on the previous target cardinality; note that, due to the death process, only the last 
measurement is relevant for providing a lower bound on target cardinality.  Equation (2.19) requires (2.4). 
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Finally, we consider a further generalization to include both cardinality dynamics and false alarms.  
Equations (2.18-2.19) are directly applicable; in (2.19), in place of (2.4), we use (2.20) – the single-scan 
version of equation (2.10). 
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3 RECENT ADVANCES IN MULTI-STAGE TRACKING 

Among the known approaches to multi-target tracking, multi-hypothesis tracking (MHT) appears to 
provide the best performance results, albeit at the cost of increased computational expense and with some 
(generally minor) time latency between the input and output.  However, single-stage centralized MHT 
processing does not suffice in a number of surveillance settings.  Table 3.1 lists a number of multi-stage 
fusion architectures that we have studied, with a brief mention of their applicability.  Further details on our 
MHT algorithm and on many of the multi-stage architectures listed in table 3.1 may be found in [5] and 
references therein, as well as in more recent papers [6-7]. 
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Table 3.1: Multi-stage data fusion architectures. 

Architecture Applicability 

track-while-fuse Baseline, centralized MHT approach [5] 

track-before-fuse High detection-threshold settings with pronounced 
target-fading effects, as in undersea surveillance [5] 

fuse-before-track Large sensor networks with synchronized sensors; 
simplest first-stage static-fusion approach is contact 

sifting [5] 

track-extract-track Dim targets in clutter [5] 

track-break-fuse Dense target scenarios [5] 

modified fuse-before-track Large sensor networks with synchronized sensors; 
approaches include ML-MHT, ML-MHT2, and 

MHT2 [6] 

track-segment-fuse Dense target scenarios with lengthy group motion 
and low-revisit rate feature-rich sensors (see below; 

closely related to the approach described in [8]) 

modified track-before-fuse Multi-sensor settings where feature-rich sensors 
have low revisit rates or intermittent coverage, 

requiring customized track-management logic [7] 

track-adapt-track Low-resolution sensor settings (see below) 

low-q track – high-q track Dim targets in clutter (see below) 

track merging Post-processing clean-up procedure that relaxes 
single-detection assumption (see below) 

 
The motivation at the heart of all the multi-stage approaches outlined in table 3.1 is to identify multi-stage 
approaches that match or exceed the performance and robustness characteristics of much more complex 
single-stage tracking solutions.  Further, the MHT algorithmic module at the heart of these architectures is 
highly modular, thus providing simplicity and flexibility of use in addressing problems in a wide range of 
surveillance settings.  We discuss some recent developments below. 

3.1 Hypothesis management in dense-target scenarios (track-segment-fuse) 
As a computationally-efficient variation on the track-break-track architecture [5], we may consider the 
following scheme.  A first MHT stage (with n-scan=0) identifies high-quality contact data.  Subsequently, 
data associations are broken only when group compositions change.  That is, in the second pass, all tracks 
are grouped by normalized state proximity and, when a new track enters or leaves a particular group, all 
tracks in the group are terminated and re-initialized.  The resulting set of segmented tracks is then passed 
to a third processing stage: an MHT stage (with n-scan>>0) that performs segment-to-segment fusion with 
the inclusion of low-revisit rate feature-rich data.  This processing scheme is closely related to that 
developed in [7], but without the need for aggregate group state computations. 

The track-segment-fuse approach is preferable to the track-break-fuse approach when a high down-stream 
n-scan is required or when multi-target association ambiguities persist for many sensor scans.  The 
modified fuse-before-track approaches (see table 3.1) are of intermediate complexity between the others, 
as track breaks are introduced for at each time step: fewer breaks than in track-break-fuse, but more than 
in track-segment-fuse. 
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3.2 Tracking with low-resolution sensors (track-adapt-track) 
During recent NURC at-sea experimentation, the modified track-before-fuse architecture was severely 
tested due to the limited resolution of legacy ship-based radar systems [8].  In particular, we find that 
vessel radar tracks are recently dropped when in close proximity to another.  Subsequent to the at-sea 
experimentation, we have examined this problem further in a simulation-based setting.  In particular, we 
simulate a rendezvous-at-sea whereby targets approach, move in close proximity for some time, and then 
diverge.  Contact data is simulated with a nominal FAR but with a PD that drops significantly while the 
targets are close. 
One approach to this problem is to consider an adaptive track coasting scheme whereby tracks in close 
proximity are coasted for much longer times in the absence of a measurement update.  This approach is 
problematic, as tracks are easily seduced by false contacts.  A more robust approach is to allow track 
terminations after short-duration coasts, followed by adaptive coasting in a second stage.  An illustration 
of the effectiveness of the two-stage, track-adapt-track approach is shown in figures 3.1-3.2. 
There is still a need for further improvement to the track-adaptive-track scheme.  Indeed, note in the 
example that, while we are able successfully to associate two track segments on either side of the close-
target motion, the other two segments are not successfully associated.  Indeed, it is necessary to augment 
the second-stage adaptive coasting so that the current coasting methodology based on a nearly-constant 
velocity target motion model (which amounts to dead-reckoning) be replaced by a more sophisticated 
approach that coasts the track in vicinity of existing active tracks, where these exist.  This would allow for 
maneuvers as part of the track-coasting process. 

3.3 Tracking dim targets in clutter (low-q track – high-q track) 
Tracking low PD targets in clutter is a significant challenge.  Maximum likelihood (ML) approaches 
effectively lower the target process noise to zero, and limit the search to a single non-manuevering target.  
Recently, there has been work to extend ML-based approaches to handle multiple, maneuvering target. 
The MHT solution provides a useful tool to address the dim-target challenge.  In particular, we proceed in 
a two-stage approach.  In the first stage, we process the data with near-zero process noise.  In the second 
stage, we allow for much lengthier track coasts (as previously done, this is best performed in a 
downstream stage with less clutter), as well as with a larger process noise.  The idea is to associate short, 
low-maneuver segments into higher-continuity tracks.  An illustration of the potential of this approach is 
given in figures 3.3-3.6. 
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Figure 3.1: Crossing target trajectories (magenta), contact data (black), single-stage adaptive 

tracking (red), first-stage tracking (blue), track-adapt-track (cyan). 
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Figure 3.2: Close-up of crossing target trajectories (magenta), contact data (black), single-stage 

adaptive tracking (red), first-stage tracking (blue), track-adapt-track (cyan). 

Multi-Stage Data Fusion in Security and Defence  

4 - 8 RTO-EN-SET-157(2010) 

 

 



 

 

-80 -60 -40 -20 0 20 40 60 80

-15

-10

-5

0

5

10

1

red=centralized, blue=first stage, cyan=second stage

 
Figure 3.3: The dim-target problem. Target trajectories (magenta), contact data (black), single-

stage tracking (red). 
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Figure 3.4: The dim-target problem. Target trajectories (magenta), contact data (black), low-
process-noise tracking (blue). 
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Figure 3.5: The dim-target problem. Target trajectories (magenta), contact data (black), second-
stage tracking (cyan) in low-q track – high-q track architecture. 
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Figure 3.6: The dim-target problem: aggregate results. Target trajectories (magenta), contact 
data (black), low-process-noise tracking (blue), second-stage tracking (cyan) in low-q track – 

high-q track architecture. 
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3.4 Track merging  
Automatic tracking often results in track fragmentation and redundant tracks on the same target.  This may 
be caused by sensor limitations (missed detections, high false contact rate, unresolved measurement, 
redundant measurements) or tracker limitations.  It is of interest to develop schemes to improve track 
continuity. 

Our approach to this problem is to consider a post-tracker, track-merging algorithm.  There are a number 
of reasons for choosing this two-stage processing paradigm as opposed to seeking to develop an enhanced, 
single-stage tracking solution: 

• This is a simpler approach as it does not require changing the fundamental assumption that targets 
give rise to at most one measurement per scan; 

• More aggressive fusion (in this context, allowing for multiple target returns from the same object) 
is less error prone in downstream processing in which false returns are largely absent; 

• The tracker is scan-based, while our post-processing allows for batch analysis. 

Simplifying assumptions: 

• Single-sensor, single-footprint formulation; the general case will involve a multi-sensor, multi-
footprint formulation; 

• Upstream tracker involves hard data association and sensor measurement information is available 
at output (correspondingly, terminal track coasts are removed); 

• No prior distribution on number of targets. 

We develop a sub-optimal, greedy fusion approach as the optimal solution may be computationally 
intractable for a large number of tracks.  We assume knowledge of the following: 

• Target kinematic model and sensor measurement model that allow for the evaluation of 
( )1| −i

i xxp , where 1−ix  is the measurement (and missed detection) sequence up to and including 
time 1−it ; 

• A sensor detection model for the number of returns per target per scan at time it .  In a more 
general form, this model is the convolution of Bernoulli and Poisson distributions, allowing for a 
target-originated contact with probability DP  as well as a Poisson-distributed number of false 
returns.  The distribution may be simplified by limiting to one the number of extraneous returns 
(with probability FAP ); accordingly, we may then use the multinomial distribution as follows: 

( ) ( )( )FADm PPp −−= 110 , ( ) ( ) ( )DFAFADm PPPPp −+−= 111 , and ( ) FADm PPp =2 . 

Note that the sensor model applies downstream of target tracking, and as such accounts for tracker 
inaccuracies that give rise to redundant measurements.  Thus, FAP  reflects sensor measurement 
redundancies as well as false contacts that are associated to target tracks through tracker processing. 
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3.4.1  Track data without sensor measurements: the case of partial information and linear 
dynamics and measurements 

Most tracking systems do not provide upstream sensor measurement information.  In fact, for those 
trackers that utilize soft data association, generally there are multiple sensor measurements that give rise to 
each track update.  Thus, it is of interest to extend the basic track-merging approach to account for these 
cases.  As an intermediate case, trackers may provide partial sensor measurement information; namely, an 
indication as to where a given track state constitutes a predicted state (i.e. track coast) or updated state (i.e. 
measurement available). 

We will focus on the case of partial measurement information and linear dynamical and measurement 
models.  In this case, provided that tracker filter parameters are known and that there is exactly one 
measurement associated with each track update, pseudo-measurements can be derived that correspond 
exactly to the upstream measurements. 

Let the known sequence of state estimates be given by ( ) ( )( ),...2|2,1|1 XX , and let ( ),..., 21 zzz =  be the 
measurement indicator sequence, i.e. 1=iz  if there is a measurement at it , and 0=iz  otherwise.  
Assume that the target dynamical model and sensor measurement model are known: 

( )kkkkkk QNwwXAX ,0~,1 +=+ ,    (3.1) 

( )kkkkkk RNwvXCZ ,0~,1 +=+ .    (3.2) 

Assume [ ]kkk CCC ,2,1=  with 0,1 >kC  and 0,2 =kC .  Correspondingly, let 

( ) ( ) ( )[ ]′= kkXkkXkkX ||| 21 .  Let V be the covariance prior for the unmeasured portion of the state 
vector; as with the target and sensor models, we assume this filter parameter to be known.  Manipulation 
of the Kalman filter equations leads directly to the measurement-reconstruction equations. 

First, the filter covariance expressions can be reconstructed without filter state estimates as follows: 

( ) 1
1,11

1
1,1

1
1,1

0
01|1 −

−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= CZ

V
RCCP

T

.    (3.3) 

( ) ( ) kkk QAkkPAkkP +′=+ ||1 ,     (3.4) 

( ) ( )( ) 1
1111 |1|1 −
++++ +′+′+= kkkkk RCkkPCCkkPL ,   (3.5) 

( ) [ ]( ) ( )kkPCLzIkkP kkk |1111|1 111 +=−=++ +++ .   (3.6) 

Next, measurement reconstruction is as follows; note that equation (8) applies when 11 =+kz . 

( )1|11
1
1,11 XCZ −= ,     (3.7) 

( )( ) ( ) ( ) ( ) ( )( )( ) ( )( ).||1|11|1|1|1 11
1 kkXARkkPCkkPIkkXkkPRkkPZ kkkkk

−−
+ ++′+−++++++=  

(3.8) 
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3.4.2  Track scores 

Let track j be given by a sequence of associated measurements ( ),..., 21 xx  defined on ( ),..., 21 tt .  We define 
φ=ix  when no measurement exists at time it .  Further, let ( ) { }φ≠= iii

xtjs |min  and 

( ) { }φ≠= iii
xtjf |max .  The track score ( )jc  is given by the following, where 1−ix  denotes all 

measurements up to and including time 1−it : 

( ) [ ] ( ) ( ) [ ] ( ){ }
( )

( )

∏
=

− =+≠−=
jf

jsi
mi

i
imi pxxxppxjc 01|11log 1 φφ .   (3.9) 

In equation (3.1) we have ( ) ( )11 ,0 Rgxp = , where g is the Gaussian probability density function (pdf).  
Further, ( )⋅mp  is the multinomial distribution as noted previously. 
More generally, let track j be given by a sequence of associated measurements ( ),...,...,,...,, ,1,22,11,1 kixxxx  
where 0≥in  measurements may exist at time it .  In the case of no measurements at time it , we have  

φ=1,ix .  The track score ( )jc is given by: 

( ) [ ] ( ) ( ) ( ) [ ] ( )
( )

( )

∏ ∏
= =

−
−

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=+≠−=
jf

jsi
mi

n

k

i
ikii

i
kiimi pxxxpxxxxpnpxjc

i

01|,...,|1log 1,
2

1
1,1,1,

1
,1, φφ . (3.10) 

In equation (3.10), we have ( ) ( )11,1 ,0 Rgxp = .  Simplifying the notation by suppressing the redundant-
measurement index i, the kinematic-residual cost term is given by: 

( ) ( ) ( )( )111111 |1,|1| ++++++ +′++−= kkkkk
k

k RCkkPCkkXCxfxxp .  (3.11) 
Note that, in general, the track score depends on the ordering of multiple measurements at the same time.  
We neglect this and consider an arbitrary ordering of such measurement.  (In the case of linear 
measurements, the ordering does not impact the track score.) 

3.4.3  Greedy track merging 

Let N be the number of tracks of interest, and let each track j have associated cost ( )jc .  We consider an 
N-by-N matrix C of fused-track costs, where the ijth element ijc  is given by ( ) ( ) ( )jciclc −− .  In turn, track 
( )jil ,  is defined by the merged, time-ordered sequences of measurements in tracks i and j.  The diagonal 

elements of C are set to zero: Njc jj ,...1,0 == .  Each matrix element ijc  represents the cost of replacing 
tracks i and j with the corresponding track ( )jil , . 
Having generated matrix C, we identify its smallest negative matrix element jic ˆ̂ .  Correspondingly, we 

replace tracks î  and ĵ  by ( )jil ˆ,ˆ .  This leads to a set of N-1 tracks, for which a new matrix C is 
determined.  The procedure is iterative, and terminates when no non-negative matrix elements remain. 
Note that the track fusion methodology defined here avoids the enumeration of the 12 −N  local track 
hypotheses to be considered.  Thus, there is no guarantee that the resulting set of fused tracks corresponds 
to the optimal set of local track hypotheses.  In principle, if 12 −N  were not prohibitive, one could 
consider an LP-relaxation or Lagrangian relaxation approach to determine the optimal set of local 
hypotheses [9-10].  Track-oriented relaxation approaches obviate the need for considering global 
hypotheses; indeed, given N tracks, there are NB  ways to partition these, where the Bell number NB  
grows very rapidly as a function of N [11]. 

3.4.4  Examples with two synthetically-generated tracks 

Let us examine a simple example in which a linear target trajectory gives rise to two overlapping-in-time 
tracks.  Following the methodology defined above, it is of interest to investigate under what conditions the 
tracks are merged.  The exact scenario characteristics are summarized in table 3.2. 
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Table 3.2: Scenario characteristics for the two-track example. 

Sensor revisit time 1sec 

Sensor measurement covariance matrix 
2m

10
01
⎥
⎦

⎤
⎢
⎣

⎡
 

Sensor detection probability 9.0=DP  

Sensor revisit time 1sec 

Duration of tracks 60 scans 

Duration of track overlap s scans 

Track displacement bias d m 

Tracker kinematic process noise 0.01m2s-3 

Tracker velocity prior covariance 
22m

10
01 −
⎥
⎦

⎤
⎢
⎣

⎡
s  

Extraneous measurement probability FAP  

 
A scenario realization is illustrated in figures 3.7-3.8, with d=1m, s=3, and 1.0=FAP .  
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Figure 3.7 Two-track example. Nominal target locations are red and blue dots, sensor 

measurements are crosses, track segments are trajectories, fused track is black trajectory. 

Figure 3.9 provides Monte Carlo results.  Each data point is based on 20 realizations.  As expected, we 
find that tracks that have a temporal gap generally will not fuse, and likewise tracks with significant 
temporal overlap will not fuse.  The highest fusion likelihood is achieved when there is neither a temporal 
overlap nor a temporal gap.  As the kinematic discrepancy (track displacement bias d) is reduced or the 
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redundancy parameter is increased (extraneous measurement probability FAP ), fusion is more likely to 
lead to improved track scores. 
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Figure 3.8: Close-up of track overlap in figure 3.7. 
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Figure 3.9: Baseline results (d=2, 1.0=FAP ) in red; variations leading to higher probability of 

track-score improvement through fusion: first variation (d=1, 1.0=FAP ) in blue and second 

variation (d=2, 2.0=FAP ) in black. 

Multi-Stage Data Fusion in Security and Defence 

RTO-EN-SET-157(2010) 4 - 15 

 

 



  

  

 

 

It is worth noting that in the special case of two point-tracks, these will not fuse regardless of whether they 
is overlap, a temporal gap, or neither.  The best-scoring fusion situation is where there is neither overlap 
nor a gap.  Nonetheless, even in this instance, the kinematic-filter score given by equation (3.10) is slightly 
lower than in the case of a second track initiation.  The result is a reasonable one: tracks should fuse only 
when the detection and kinematic characteristics of the scenario are such as to justify modification of the 
upstream tracker output.  

In general, out-of-phase measurements (i.e. coasts on one track when the other has updates) and single-
track maneuvers in conjunction with track fragmentation will increase the likelihood that track merging 
will be performed.  Such instances emerge in more complex, data-driven track realizations than those 
examined in this section.  Thus, more comprehensive analysis of track merging performance is required 
with tracker executions based on simulated sensor data. 

To conclude, our approach to track merging accounts for target kinematic characteristics, sensor detection 
and localization characteristics, and the impact of target tracking on redundant measurements.  Further 
work includes: (1) analysis of the performance benefits of track merging with simulation-based tracker 
runs; (2) treatment of the general case of legacy track data and a quantification of the corresponding 
performance degradation; and (3) development of a scan-based track-merging methodology, for use in 
real-time tracking applications. 

4 CONCLUSIONS 

Estimation and detection theory provide a theoretical underpinning for a wide variety of problems that, 
taken as a whole, constitute the target tracking challenge.  These notes provide a brief taxonomy of 
approaches to this challenge, and move on to discuss specific results on the target cardinality problem and 
in multi-stage tracking; the latter in particular is an area of active research in which the author has been 
engaged for many years.  Multi-stage approaches to tracking are often simpler, more robust, and higher 
performing than highly sophisticated single-stage processing algorithms.  We hope to encourage more 
research on fusion architectures, as we believe this topic constitutes a fruitful area for significant advances 
in surveillance capabilities for a wide variety of security and defense applications. 
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